
6

Process capability analysis

In general, process capability indices have been quite controversial. (Ryan, 2000, p. 186)

Overview

Capability indices are widely used in assessing how well processes perform in relation to

customer requirements. The most widely used indices will be defined and links with the

concept of sigma quality level established. Minitab facilities for capability analysis of both

measurement and attribute data will be introduced.

6.1 Process capability

6.1.1 Process capability analysis with measurement data

Imagine that four processes produce bottles of the same type for a customer who specifies that

weight should lie between 485 and 495 g, with a target of 490 g. Imagine, too, that all four

processes are behaving in a stable and predictable manner as indicated by control charting of

data from regular samples of bottles from the processes. Let us suppose that the distribution

of weight is normal in all four cases, with the parameters in Table 6.1. The four distributions of

weight are displayed in Figure 6.1, together with reference lines showing lower specification

limit (LSL), upper specification limit (USL) and Target (T). How well are these processes

performing in relation to the customer requirements?

In the long term the fall-out, in terms of nonconforming bottles, would be as shown in the

penultimate column of Table 6.1. The fall-out is given as number of parts bottles) per million

(ppm) thatwould fail tomeet the customer specifications. The table inAppendix 1 indicates that

these fall-outs correspond to sigma quality levels of 4.64, 3.50, 2.81 and 3.72 respectively

for lines 1–4. Scrutiny of the distributions (the voices of the processes) with reference to

the specification limits (the voice of the customer) reveals the following points:
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. Line 1 is performing as well as it can with the process mean ‘on target’.

. Line 2 could perform as well as line 1 if the mean could be adjusted down from 492 to

the target of 490. Adjustment of process location can often be a relatively easy thing

to achieve.

. Line 3 is performing as well as it can with the process mean on target but it is inferior to

lines 1 and 2 because of its greater variability. Reduction of variability would be

required to improve the performance of line 3, and this can often be a relatively difficult

thing to achieve.

. Line 4, although currently performing less well than line 1, has the potential to give the

lowest fall-out of all four processes if the mean can be adjusted upward from 487 to 490.

Sigma quality levels are intended to encapsulate process performance in a single number.

However, one must beware the danger of judging a process purely on the basis of its sigma

Figure 6.1 Distributions of weight for the four processes.

Table 6.1 Parameters for the distributions of weight with fall-out and

sigma quality level (SQL).

Process Mean Standard deviation Fall-out (ppm) SQL

Line 1 490 1.5 858 4.64

Line 2 492 1.5 22 752 3.50

Line 3 490 3.0 95 581 2.81

Line 4 487 0.9 13 134 3.72
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quality level. In the case of the above four processes, reliance solely on sigma quality level

could blind one to the high potential performance of line 4.

Process capability indices are designed to do the same as sigma quality levels, to

encapsulate in single numbers process performance with respect to customer requirements.

They can be said to measure the extent to which the ‘voice of the process’ is aligned with the

‘voice of the customer’. The fundamental fact which underpins the indices is that 99.73% of

observations from a normal distribution lie between m � 3s and m þ 3s, i.e. in a range of

three standard deviations on either side of the mean. These values are often referred to as the

natural tolerance limits for the process. Note that the proportion 0.27%of observationswill lie

outside the natural tolerance range in the case of a normal distribution. The customer tolerance

range is the range of values that the customer will tolerate, i.e. from the lower specification

limit to the upper specification limit. The process capability index Cp is defined as the ratio of

the customer tolerance range to the natural tolerance range. Its calculation for line 1 is

displayed in Box 6.1.

The reader is invited to perform the calculations for the other three lines and to confirm the

entries in Table 6.2 for the four processes. Note that line 4 ‘tops the league’ in terms having the

highest Cp value, lines 1 and 2 have the same intermediate value and line 3 has the lowest.

The indexCpmeasures the potential capability of a process. Thus, although lines 1 and 2 have

the same potential capability, their actual capability in terms of fall-out and SQL values differs

because line 2 is not operating on target. Thus a disadvantage of the indexCp is that it does not

take process location into account. The process capability indexCpk does take process location

into account. Its calculation for line 2 is displayed in Box 6.2.

The reader is invited to perform the calculations for the other three lines and to confirm the

entries in Table 6.3 for the four processes.

The process capability index Cp is given by

Cp ¼
Customer tolerance range

Natural tolerance range
¼

USL�LSL

6s
:

For line 1 this gives

Cp ¼
495� 485

6� 1:5
¼

10

9
¼ 1:11:

Box 6.1 Calculation of Cp for line 1.

Table 6.2 SQL and Cp values for the four lines.

Process Mean Standard deviation SQL Cp

Line 1 490 1.5 4.64 1.11

Line 2 492 1.5 3.50 1.11

Line 3 490 3.0 2.81 0.56

Line 4 487 0.9 3.72 1.85
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The indexCpkmeasures the actual capability of a process. In the type of scenario discussed

here, Cp¼Cpk when the process mean coincides with the target value mid-way between the

LSL and USL, i.e. when the process is centred. (Another benefit of the Cpk index is that it may

be calculated in situations where there is only one specification limit, e.g. a customer

requirement could be that a tensile strength has to be at least 25N/mm2 or that cycle time

must be no greater than 40 minutes.)

Table 6.4 gives values of Cp and Cpk for Cp ranging from 0.5 to 2.0, first with the process

centred and second with the process off centre by a 1.5 standard deviation shift. Also given are

the corresponding fall-out counts of nonconforming product in ppm and the sigma quality

levels. In particular, note that a Six Sigma process corresponds to a Cp value of 2.0 and a Cpk

value no less than 1.5.

In the above discussion of the four lines it was assumed that we had perfect knowledge of

the process behaviour.We now turn to the assessment of process capability in a situationwhere

the capability indices have to be estimated from process data.

In Exercise 3 inChapter 2, referencewasmade to bottleweight data stored in theworksheet

Bottles.MTW. The datawere collected as subgroups of size 4 andXbar and R charts are shown

in Figure 6.2. The Minitab default and recommended pooled standard deviation method for

estimating the process standard deviation was used, yielding 2.039 15.

All available tests for evidence of special cause variation were applied. No signals were

obtained from the charts so it appears that the process was behaving in a stable, predictable

manner. Thus it is reasonable to stack the data into a single column and consider it as a sample

of 100 observations from the distribution of bottle weight.

The normal probability plot in Figure 6.3 indicates that a normal distribution provides an

adequate model for the data. Figure 6.4 shows a histogram of the 100 observations of weight

The process capability index Cpk is given by

Cpk ¼ min Cpl;Cpu

� �

¼ min
m�LSL

3s
;
USL�m

3s

� �

:

For line 2 this gives

Cpk ¼ min
492� 485

3� 1:5
;
495� 492

3� 1:5

� �

¼ min
7

4:5
;
3

4:5

� �

¼ min 1:56; 0:67½ � ¼ 0:67:

Box 6.2 Calculation of Cpk for line 2.

Table 6.3 Cp and Cpk values for the four lines.

Process Mean Standard deviation Cp Cpk

Line 1 490 1.5 1.11 1.11

Line 2 492 1.5 1.11 0.67

Line 3 490 3.0 0.56 0.56

Line 4 487 0.9 1.85 0.74
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with a fitted normal curve superimposed and reference lines indicating the lower specification

limit of 485 and upper specification limit of 495. The target value forweight will be considered

to be T¼ 490, the mid-point of the specification range. The diagram gives a visual repre-

sentation of process capability and indicates that some of the bottles measured failed to meet

Table 6.4 Cp and Cpk, with fall-out rates and sigma quality levels.

Process centred Process off-centre by 1.5s

Cp Cpk

Fall-out

(ppm) Cp Cpk

Fall-out

(ppm)

Sigma

quality level

0.50 0.50 133 614 0.50 0.00 501 350 1.5

0.60 0.60 71 861 0.60 0.10 382 572 1.8

0.70 0.70 35 729 0.70 0.20 274 412 2.1

0.80 0.80 16 395 0.80 0.30 184 108 2.4

0.90 0.90 6 934 0.90 0.40 115 083 2.7

1.00 1.00 2 700 1.00 0.50 66 811 3.0

1.10 1.10 967 1.10 0.60 35 931 3.3

1.20 1.20 318 1.20 0.70 17 865 3.6

1.30 1.30 96 1.30 0.80 8 198 3.9

1.40 1.40 27 1.40 0.90 3 467 4.2

1.50 1.50 6.8 1.50 1.00 1 350 4.5

1.60 1.60 1.6 1.60 1.10 483 4.8

1.70 1.70 0.34 1.70 1.20 159 5.1

1.80 1.80 0.067 1.80 1.30 48 5.4

1.90 1.90 0.012 1.90 1.40 13 5.7

2.00 2.00 0.002 2.00 1.50 3.4 6.0

Figure 6.2 Xbar and R charts of bottle weight data.
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customer requirements through being too light. One way in which we can proceed to estimate

process capability is as detailed in Box 6.3.

Many authors deemaprocesswith aCp value less than 1 to be incapable. The fact thatCpk is

less than Cp indicates that the process is not centred. The estimates of process mean and

standard deviationmay be used to predict fall-out for the process, as it is currently operating, at

14 913 ppm,with 9866 ppmpredicted to be below the LSL and 5047 ppmpredicted to be above

the USL.

In order to perform the capability analysis using Minitab one can use Stat>Quality

Tools>Capability Analysis>Normal. . .. Under Options. . . the Target was specified as

Figure 6.3 Normal probability plot of the stacked data.

Figure 6.4 Histogram of weight with fitted normal curve and specification limits.
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490. Under Estimate. . . the default Pooled standard deviation was chosen as the means of

estimating process standard deviation in order to be able to compare Minitab output directly

with the results calculated in Box 6.3 and the option Use unbiasing constants to calculate

overall standarddeviationwas checked.Defaultswere accepted otherwise. The dialog box is

shown in Figure 6.5, with the arrangement of the data indicated and specification limits

From the Xbar chart, ��X ¼ 489:754, so we can take an estimate of the process mean to be

m ¼ 489:754. The pooled standard deviation estimate of the process standard deviation is

ŝ ¼ 2:039. We then obtain

Cp ¼
USL�LSL

6ŝ
¼

495� 485

6� 2:039
¼

10

12:234
¼ 0:82;

Cpk ¼ min Cpl;Cpu

� �

¼ min
m�LSL

3ŝ
;
USL�m

3ŝ

2

4

3

5

¼ min
489:754� 485

3� 2:039
;
495� 489:754

3� 2:039

2

4

3

5

¼ min
4:754

6:117
;
5:246

6:117

2

4

3

5 ¼ min 0:78; 0:86½ � ¼ 0:78:

Box 6.3 Estimation of Cp and Cpk for bottle weight.

Figure 6.5 Dialog for process capability analysis via Minitab.
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entered. The output is displayed in Figure 6.6. (Process Capability� is a trademarked feature

of Minitab.)

The output in Figure 6.6 will now be considered in detail.

. The histogram of the 100 (25 subgroups of 4 bottles) bottle weight values has super-

imposed on it reference lines indicating the target of 490 and the LSL and USL of 485

and 495, respectively. Also superimposed are two fitted normal distributions labelled

Within (solid curve) and Overall (dashed curve). Further referencewill be made to these

distributions below.

. In the top left-hand corner of the output the text box labelled Process Data includes two

standard deviations –within and overall. These are two estimates of the process standard

deviation s. The value 2.039 15 was obtained using the pooled standard deviation

method. Since this method of estimating the process standard deviation is based on the

25 subgroup standard deviations, and since standard deviation measures variability

within subgroups, it is natural to refer to the estimate in this way. If the subgroups are

stacked into a single column thenDescriptive Statistics gives the standard deviation of

the overall data set as s¼ 2.093 59. However, although sample variance s2 provides an

unbiased estimate ofs2, sample standard deviation s provides a biased estimate ofs. An

unbiased estimate is obtained by dividing s by c4, a constant whose value depends on

sample size. For sample size 100 the value of c4 is 0.997 48 and division of 2.093 59 by

this value yields 2.098 88, the value referred to as the overall estimate of the process

standard deviation.

. The within normal curve corresponds to the N(489.754, 2.039 152) distribution and the

overall to the N(489.754, 2.098 882) distribution.

. Three bottles from the 100 bottles measured had weight less than the LSL and none had

weight above the USL. This is equivalent to a total of 30 000 ppm failing to meet the

Figure 6.6 Process capability output.
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specifications as recorded in the text box labelled Observed Performance at the bottom

left of the display.

. The text boxes to the right of the one recording Observed Performance give the expected

performances calculated using the within and overall normal distributions. Since the

overall standard deviation exceeds thewithin standard deviation the predicted fall-out is

greater for the former.

. The Cp and Cpk indices have been calculated using the within estimate of the process

standard deviation and agree with the calculations given above in Box 6.3.

. The Pp and Ppk indices are referred to as process performance indices. They are

analogous to the Cp and Cpk indices but are calculated using the overall standard

deviation. The reader is invited to confirm the given values of Pp and Ppk as an exercise.

In this example the values ofCp and Pp (0.82 versus 0.79) are similar and the values ofCpk and

Ppk (0.78 versus 0.76) are similar. This is typical of scenarios where the quality characteristic

of interest is normally distributed and the process is behaving in a stable and predictable

manner as evidenced by monitoring using control charts.

In discussing process performance indices, Montgomery refers to the recommendation

that the capability indices Cp and Cpk should be used when a process is in a state of statistical

control and that the process performance indices Pp and Ppk should be used when a process is

not in a state of statistical control. He comments ‘if the process is not in control the indices Pp

and Ppk have no meaningful interpretation relative to process capability because they cannot

predict process performance’ (Montgomery, 2009, p. 363).

Step-by-step assessment of process capabilty in the above example involved: -

. Xbar and R control charts (Figure 6.2);

. a normal probability plot (Figure 6.3);

. a histogram with superimposed normal distribution and reference lines indicating the

specification limits (Figure 6.4);

. the capability indices (Figure 6.6).

Use of Stat>Quality Tools>Capability Sixpack>Normal. . . essentially provides all of

the output from these steps plus a run chart of the data for the last 25 subgroups and what is

referred to as a capability plot. (Sixpack� is a trademarked feature of Minitab.) Under

Estimate. . ., the default Pooled standard deviation was chosen as the means of estimating

process standard deviation and the option Use unbiasing constants to calculate overall

standard deviation was checked. Defaults were accepted otherwise. Perform all eight tests

was selected underTests. . ., andOptions. . .was used to specify theTarget as 490. The source

of the data and the specification limits were indicated as before. The output for the data set

considered above is shown in Figure 6.7. Note that in this case therewere only 25 subgroups so

all of the 100 data values are displayed in the run chart.

The capability plot consists of three line segments. The lower (labelled Specs) indicates the

customer tolerance range from the lower specification limit to the upper specification limit and

has a tick at its midpoint, representing the target. The middle segment (labelled Overall)

represents the natural tolerance range obtained using the overall estimate of standard deviation
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while the upper (labelled Within) represents the natural tolerance range obtained using the

within estimate of standard deviation. The index Cp is the ratio of the length of the lower

segment (labelled Specs) to that of the upper segment (labelled Within); the plot gives an

immediate visual indication that Cp is less than 1.

The index Cpm given in the output is defined as:

Cpm ¼
USL�LSL

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þðm� TÞ2
q :

T is the target value, normally the mid-point of the specification range. With two-sided

specification limits, thevalue of theCpk index does not give any indication of the location of the

process mean m in relation to the specification limits LSL and USL. The Cpm index was

developed in order to deal with this inadequacy of the Cpk index. If the process is centred

‘on target’ with the processmean,m, equal to the target,T, then theCpm index is identical toCp.

Minitab gives this index computed using the overall estimate of standard deviation. The main

point to note is that the closer the value of Cpm is to the value of Cp, the closer is the process to

being centred on target.

6.1.2 Process capability indices and sigma quality levels

Consider now an alternative version of the output from Capability Analysis>Normal. . . to

that displayed in Figure 6.6. In order to obtain this alternative one proceeds with the dialog

displayed in Figure 6.5, except that under Options. . . one selects Benchmark Z’s (sigma

level) and checks Include confidence intervals. The output is shown in Figure 6.8.

Figure 6.7 Process Capability Sixpack output.
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The expected process performance, calculated using the within estimate of the process

standard deviation, is a fall-out of 14 913 nonconforming bottles per million as far as

specifications for weight are concerned. Reference to the table in Appendix 1 indicates that

this corresponds to a sigma quality level of around 3.67. The formula in Box 6.4may be used to

convert the Z.Bench value quoted under Potential (Within) Capability to an estimate of the

sigma quality level of the process. Thus the sigma quality level of the process is estimated to be

2.17 þ 1.5¼ 3.67. Readers interested in the technical details of how Z.Bench is computed in

Minitab should consult the Help facility.

When dealing with random variable X having mean m and standard deviation s, the

corresponding random variable Z given by Z ¼ ðX�mÞ=s is referred to as the standardized

random variable. Using the overall mean weight, 489.754, of the 100 bottles measured and the

within estimate of standard deviation, the standardized values corresponding to specification

limits, Z1 and Z2 are calculated in Box 6.5.

Figure 6.8 Alternative process capability output.

Sigma quality level¼Z.Bench þ 1.5

Box 6.4 Formula for sigma quality level.

Z1 ¼
USL�m

s
¼

495� 489:754

2:03915
¼ 2:57

Z2 ¼
LSL�m

s
¼

485� 489:754

2:03915
¼ � 2:33

Box 6.5 Calculation of Z1 and Z2.
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The first of these values indicates that the USL is estimated to be 2.57 standard deviation

units above the process mean, and the second indicates that the LSL is estimated to be 2.33

standard deviation units below the process mean (because of the negative sign). Note that, in

the Minitab output in Figure 6.8, under Potential (Within) Capability the numerical values

of these Z-values are quoted as Z.LSL¼ 2.33 and Z.USL¼ 2.57. They are used in the

computation of Z.Bench within Minitab. The lower of these two values, i.e. 2.33, gives the

distance to the nearest specification limit (DNS) in standard deviation units. The DNS must

be at least 3 for the process to have a Cpk of at least 1.

It is important to bear in mind that any quoted capability index such as Cpk is in fact an

estimate of the ‘true’ Cpk for the process. Thus, using the within estimate of process standard

deviation, the estimate 0.78was obtained for the processCpk. Upper and lower 95%confidence

limits for the true Cpk of the process are 0.64 (LCL) and 0.92 (UCL). Thus in reporting the

capability analysis for bottle weight it is advisable to make the statement: ‘The estimated

process capability index Cpk is 0.78 with 95% confidence interval (0.64, 0.92).’ Confidence

intervals of this sort are such that they capture the true value of that which is being estimated

from the data 95 times out of 100 in the long term. The value 0.78 may be thought of as a point

estimateofCpk for the process and (0.64, 0.92)may be thought of as an interval estimateofCpk

for the process. Confidence intervals will be considered in more detail in Chapter 7.

Note that in the case of Z.Bench only a Lower CL value of 1.63 is quoted. A Z.Bench value

of 1.64 corresponds to a sigma quality level of 1.63 þ 1.5¼ 3.13. Thus in reporting the sigma

quality level for bottle weight it is advisable to make the statement: ‘The estimated sigma

quality level is 3.67 and it can be stated with 95% confidence that the sigma quality level is at

least 3.13.’

There are situations where an assessment of process capability is required from data

obtained from a single sample of product. In such situations the customerwould bewise to seek

assurance from the supplier that the sample to be used was taken while the process was

operating in a stable and predictable manner and that the sample is representative of the

population of product. Montgomery (2009, p. 348) gives such data for the burst strength (psi)

of a sample of 100 bottles. The data are provided in the worksheet Burst.MTW and are

reproduced by permission of JohnWiley & Sons, Inc., New York. This data set will be used to

illustrate a situation where there is only one specification limit, in this case a lower

specification limit of 200 psi. The output from use of Stat>Quality Tools>Capability

Analysis>Normal. . .with subgroup size specified as 100 is shown in Figure 6.9. Clicking on

Estimate. . ., the default Pooled standard deviationmethod was checked underMethods of

estimating within subgroup standard deviation and the optionUse unbiasing constants to

calculate overall standard deviation also selected. UnderOptions. . ., bothBenchmark Z’s

(sigma level) and Include confidence intervals were selected.

The Cpk value is 0.67 with 95% confidence interval (0.55, 0.78). (It should be noted that in

this case thewithin and overall estimates of the process standard deviation are identical as there

is only a single sample.) The predicted fall-out based on a normal distributionof burst strength is

22 983 ppm.Appendix 1 indicates that this corresponds to a sigmaquality level of around3.5 for

the process. Addition of 1.5 to the Z.Bench value of 2.0 confirms the sigma quality level of 3.5.

6.1.3 Process capability analysis with nonnormal data

Consider now data stored in columns C1 to C5 of the worksheet Density.MTW giving density

measurements (g/m2) for 80 consecutive hourly samples of size n¼ 5 from a process for the
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fabrication of plastic sheeting. The specification limits are 45 to 55 g/m2. Na€ıve use of

Stat>Quality Tools>Capability Analysis>Normal. . . yields a Cpk of 1.29, which

borders on the widely recommended minimum of 1.33. The predicted fall-out is of the order

of 90 ppm. However, use of Stat>Quality Tools>Capability Analysis>Capability

Sixpack>Normal. . . reveals a normal probability plot with strong evidence that the

distribution of density is nonnormal (P-value less than 0.005). In situations such as this one

can employ Capability Sixpack (Nonnormal Distribution) to investigate alternative prob-

ability distributions to the normal, such as the Weibull. In this case the Weibull probability

distribution provides a satisfactory model, with a P-value of 0.195. Subsequent use of

Capability Analysis (Nonnormal Distribution), with selection ofWeibull, gives a predicted

fall-out of the order of 3000 ppm based on the fitted Weibull distribution (see Figure 6.10).

Reference to Table 6.4 indicates that this level of fall-out for a scenario where the

distribution was normal, and the process was stable, predictable and centred, would corre-

spond to Cp and Cpk values less than 1. Thus, in general parlance, the data indicate that the

process is not capable.

Another method for dealing with data that do not have a normal distribution is to seek a

transformation that will yield a new variable that is at least approximately normally

distributed. Minitab provides a facility for implementing Box–Cox transformations in which

the original random variable Y is transformed to W¼ Yl when l „ 0 and to W¼ ln(Y), the

natural logarithm of Y, when l is zero. The usermay either specify a value for l or implement a

procedure within the software to select an optimum value for l.

Consider the data in the worksheet Roughness.MTW which gives roughness measure-

ments (nm), for a sample of 200 machined automotive components. The upper specification

limit is 800 nm. Na€ıve use of Capability Analysis (Normal Distribution), with the data

considered as a single subgroup of 200, yields a Cpk of 2.03 and a sigma quality level of 7.59.

However, scrutiny of the histogram in the output suggests that the distribution of roughness is

nonnormal. In order to carry out a capability analysis of the data following a Box–Cox

Figure 6.9 Capability analysis of burst strength.
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transformation, use Capability Analysis (Normal Distribution), select Transform. . . and

check both Box-Cox power transformation and Use optimal lambda as indicated in

Figure 6.11.

We have already seen that, in the case of a single subgroup, thewithin and overall analyses

are identical (Figure 6.9). Thus under Options. . . one can uncheck Overall analysis.

Benchmark Z’s (sigma level) and Include confidence intervals were checked under

Options. . . in order to obtain the output in Figure 6.12.

The heading in the output indicates that the Box–Cox transformation selected employed

l¼ � 1. This means that the roughness values Y were replaced by W¼ Y� 1, i.e. by their

reciprocals. Thus, for example, the roughness values 200, 500 and 800, the USL, would be

Figure 6.10 Capability analysis of density using a Weibull distribution.

Figure 6.11 Capability analysis using a Box–Cox transformation.
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replaced by 0.005, 0.002 and 0.00125 respectively. The USL of 800 for Y corresponds to an

LSL of 0.00125, denoted by USL� in the output, for the transformed random variableW. The

histogram of the transformed data appears to indicate a normal distribution and should be

compared with the histogram of the raw data shown in the top left-hand corner of the output.

(The reader is encouraged to use theCalcmenu to compute a column of the reciprocals,W, of

the roughness values, Y, to perform a normality test in order to confirm that the transformation

has indeed been effective and to perform the capability analysis directly on the transformed

data. It has to be borne in mind that roughness less than 800 is equivalent to the reciprocal of

roughness exceeding 0.00125.) However, the key information from the output is that theCpk is

0.90 with 95% confidence interval (0.80, 0.99). Also the sigma quality level predicted

by the analysis is 2.69 þ 1.5¼ 4.19 with 95% confidence interval given by (2.39 þ 1.5,

2.98 þ 1.5)¼ (3.89, 4.48).

6.1.4 Tolerance intervals

Consider a process for the production of an electronic component with a target capacitance of

2000 nF and specification limits of 1900 and 2100 nF. Suppose that the process currently yields

components with capacitances that are normally distributed with mean m¼ 2025 nF and

standard deviation s¼ 50 nF. For a normal distribution 99% of values lie between m – 2.58s

andm þ 2.58s, which in this casewould be 1896 and 2154 nF. The interval (1896, 2154) is the

99% tolerance interval for capacitance, and we may refer to the interval (1900, 2100) as the

specification interval. These intervals are displayed in Figure 6.13. The fact that the tolerance

interval is wider than the specification interval gives an immediate indication of poor process

capability. The reader may readily verify that Cpk is 0.50 and Cp is 0.67.

Figure 6.12 Capability analysis of the transformed roughness data.
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Two steps could be taken to improve the process capability:

. Shift the mean from 2180 closer to the target value of 2000.

. Reduce the variability – a reduction in variability will result in a lower standard

deviation.

Shifting a process mean is often a relatively easy task requiring, for example, a simple process

adjustment. On the other hand, reduction of variability is generally a much more difficult task

and may require major modifications to a process.

Suppose that, following major process changes, a sample of 150 capacitors was taken with

the process operating in a state of statistical control. The measured capacitance values are

provided in Capacitance.MTW. Themean and standard deviation are �x ¼ 1999:4 and s ¼ 13:0,
respectively. The natural thing to do would be to estimate the 99% tolerance interval for the

modifiedprocess as �x� 2:58s and �xþ 2:58s, i.e. (1966, 2033).However, sincewe are nowusing

estimates of the population mean and standard deviation, a factor greater than 2.58 should be

used. In order to estimate the 99% tolerance interval with 95% confidence the factor 2.86 should

be used, with sample size 150, which yields the interval (1962, 2037). The intervals for the

modified process are displayed in Figure 6.14. Clearly there has been a dramatic improvement –

the reader is invited to verify that the estimated Cpk and Cp are 2.54 and 2.55, respectively.

Use of 95% confidence means that in the long term, when 99% tolerance intervals are

calculated for samples from a normal distribution, 95 out of 100 calculated tolerance intervals will

cover at least 99% of the population. The required factors for these calculations may be obtained

from tables such as those inHogg andLedolter (1992, p. 453). AlternativelyMinitabmay be used.

Use of Stat>Quality Tools>Tolerance Intervals. . . is required. With Samples in

columns:Capacitance, clicking onOptions. . . and selectingConfidence level: 95,Minimum

percentage of population in interval: 99, Tolerance interval: Two-sided and defaults

otherwise, the output in Figure 6.15 is obtained. The display includes a histogram of the data, a

normal probability plot that indicates that a normal distribution is a reasonable model,

Figure 6.14 Specification interval and estimated 99% tolerance interval for modified process.

Figure 6.13 Specification interval and 99% tolerance interval.
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summary statistics and a 99% normal tolerance interval, after rounding, of (1962, 2037) and a

99% nonparametric tolerance interval, after rounding, of (1962, 2030). In cases where a

normal distribution is an appropriate model these two intervals will be similar.

It is instructive to apply Stat>Quality Tools>Tolerance Intervals. . . to the roughness

data considered at the end of the previous section. With Samples in columns: Roughness,

clicking on Options. . . and selecting Confidence level: 95, Minimum percentage of

population in interval: 99, Tolerance interval: Upper bound and defaults otherwise, the

output in Figure 6.16 is obtained.

Figure 6.15 Estimated 99% tolerance interval from Minitab.

Figure 6.16 Tolerance intervals for roughness.
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As was noted earlier, the normal distribution does not provide a satisfactory model for

roughness. This is confirmed by the normal probability plot and associated P-value. The

calculations based on a normal distribution estimate that at least 99% of roughness values will

be less than 492, with 95% confidence. With an upper specification limit of 800 this would, on

the face of it, imply a capable process. However, the nonparametric calculations, which are not

based on any particular distribution, estimate that at least 99% of roughness values will be less

than 690, with 95% confidence. As 690 is much closer to 800 than is 492, the conclusion is that

the capability is not as good as erroneous use of the normal distribution approachwould suggest.

6.1.5 Process capability analysis with attribute data

Minitab also provides capability analysis for attribute data – both for situations in which a

binomialmodel is appropriate and for situations inwhich aPoissonmodel is appropriate. As an

example of a scenario involving the binomial model, consider the data in the file Invoices1.

MTW displayed in Figure 2.15 in Chapter 2, with the data for 10/01/2000 deleted, since a new

inexperienced employee had processed many of the invoices during that day. Use of Stat>
Quality Tools>Capability Analysis>Binomial. . . yields the output shown in Figure 6.17.

In the dialog, Defective: was specified as No. Incomplete and Use sizes in: was specified as

No. Invoices. Under Tests. . . the option to Perform all four tests was checked.

There are no signals of any special cause behaviour on the control chart of the data in the

top left-hand corner of the output. Additional evidence that the process is behaving in a stable,

predictable manner is provided by the display of the cumulative proportion of nonconforming

invoices shown in the bottom left-hand corner of the output. It shows the cumulative proportion

of nonconforming invoices levelling off at around 16% as more and more data became

available. (This display is similar to Figure 4.1.) The histogram displays the proportions

Figure 6.17 Binomial capability analysis of invoice data.
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(expressed as percentages) of nonconforming invoices for the 19 samples analysed. The Rate

of Defectives plot is essentially a funnel plot as described in Chapter 5. It is provided in this

context in order to give insight intowhether or not the proportion of nonconforming invoices is

influenced by the subgroup size. Here the subgroups comprised all the invoices processed on

each day. Had the group of points on the right been located at a higher level than the group of

points on the left, then this could possibly have indicated a higher proportion of nonconform-

ing invoices occurring on days when staff were working under greater pressure dealing with

higher numbers of invoices. Finally, the Summary Stats table indicate that the overall

proportion of nonconforming invoices is estimated at 15.96% or 159 607 ppm. This converts,

via Appendix 1, to a sigma quality level of around 2.5. Alternatively, addition of 1.5 to the

Process Z of 0.996 1 given in the output yields a sigma quality level of 2.5, to one decimal

place. Confidence intervals are also given. (Note thatMinitab refers to defectives rather than to

nonconforming items.)

As an example of a situation where the Poisson model is potentially appropriate consider

the data from work cell B referred to in Exercise 11 in Chapter 5. The worksheet PCB2.MTW

gives counts of nonconformities on a series of samples of printed circuit boards. The subgroup

size is given in the first column and the number of nonconformities found in the sample in the

second. Use of Stat>Quality Tools>Capability Analysis>Poisson. . . yields the output

shown in Figure 6.18. In the dialog Defects: was specified as Nonconformities and Use Sizes

in:was specified as Boards. UnderTests. . . the option to Perform all four testswas checked.

The U chart of the data provides no evidence of any special cause behaviour affecting the

process. The plot of Cumulative DPU (defects per unit) stabilizes at around 0.35, which is

indicated by the middle of the three horizontal reference lines on the chart. The upper and

lower reference lines correspond to upper and lower 95% confidence limits for defects per unit

for the process of 0.31 and 0.40. All three values are given in the Summary Stats table. The

Figure 6.18 Poisson capability analysis of PCB data.
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histogram shows the distribution of DPU for the subgroups, the scatterplot shows DPU plotted

against subgroup size. There is a suggestion from the arch-shaped scatterplot that DPUmay be

influenced by subgroup size – further investigation of this would clearly be of interest to those

responsible for the identification of nonconformities.

6.2 Exercises and follow-up activities

1. The specification limits for the amount of mineral water delivered by a bottling process

to nominal 1.5 litre bottles are 1.480 and 1.520 litres, respectively. Forty samples of five

fill volumes taken at 30-minute intervals from a bottling process are given in Volumes.

MTW. Assess the capability of the process.

Stack the data into a single column and obtain a two-sided tolerance interval that

covers at least 99.9% of fill volumes with 95% confidence. Move the mouse pointer to

the horizontal scale in the central plot so that Y-scale is displayed in a text box. Double-

click and change the scale rangeminimum andmaximum to 1.47 and 1.53, respectively.

Right-click the display and use Add>Reference Lines. . . to superimpose labelled

specification limits on the plot. Note the insight into process capability that the

display now provides.

2. The outside diameter (OD) of the pilot on an output shaft is an important quality

characteristic. Table 6.5 gives data obtained from 25 subgroups of size 4 and records the

diameter measured as deviation from nominal (micrometres). The data are also

provided in theworksheet OD.MTWand are reproduced by permission of the Statistics

and Actuarial Science Department, University of Waterloo, Canada from Steiner et al.

(1997, p. 6).

(i) Verify, using Xbar and R control charts, that the process is behaving in a stable,

predictable manner.

(ii) Given that the specification limits for the deviation from nominal are –20 and 20,

carry out a capability analysis using both Capability Analysis>Normal. . . and

Capability Sixpack>Normal. . ..

(iii) Confirm the valuesCp¼ 1.29 andCpk¼ 1.26 by direct calculation using thewithin

standard deviation estimate provided in the ProcessData textbox in the output from

Capability Analysis>Normal. . ..

(iv) Confirm the valuesPp¼ 1.19 andPpk¼ 1.16 by direct calculation using the overall

standard deviation estimate provided.

Table 6.5 Pilot diameter data.

Sub

group

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

x1 � 10 � 14 � 2 � 3 12 0 2 0 2 � 8 4 � 8 � 10 � 8 � 4 2 12 2 � 6 � 2 2 0 � 2 � 10 6

x2 � 6 � 4 12 � 5 6 0 � 6 6 4 0 2 4 2 2 6 2 6 2 � 4 4 4 4 4 4 8

x3 0 � 6 � 2 � 5 2 � 6 8 4 6 � 4 2 � 14 � 10 � 4 0 0 0 0 2 0 2 2 � 2 � 12 � 4

x4 0 4 8 � 1 2 � 8 � 6 8 8 2 6 6 4 4 8 2 2 � 8 0 4 6 4 4 4 2

222 PROCESS CAPABILITYANALYSIS



(v) Using the estimate of process ‘fall–out’ in ppm based on the within standard

deviation estimate, obtain an estimate of the sigma quality level of the process

using Appendix 1. Use the Benchmark Z’s (sigma level) option with Capability

Analysis>Normal. . . to confirm your estimate.

(vi) Change the data set by subtracting 1 from each observation in subgroup 4 and

adding 10 to each observation in subgroup 15. Repeat the capability analysis and

observe that the within estimate of standard deviation is unchanged since the

sample ranges are unchanged, but that the overall estimate has increased. As a

consequence, Cp is unchanged but Pp is reduced. Some authors argue that this

means that Pp and Ppkmeasure how the process actually performed, while Cp and

Cpk measure how the process could perform. However, scrutiny of Xbar and

R charts of the modified data reveals that they correspond to a process that is not

stable and predictable.

3. Door to needle time (DTN) is the time from arrival at hospitalwhen the ambulance stops

outside the hospital (door) to the start of the thrombolytic treatment (needle) for patients

with an acute myocardial infarction. The health authority responsible for management

of the hospital has an upper specification limit of 30 minutes for DTN for such patients.

Given the sample of door to needle times in the worksheet DTN1.MTW, carry out a

capability analysis. Following process changes, a further sample of door to needle times

was recorded and is available in the worksheet DTN2.MTW. Assess the impact of the

changes on process capability. Obtain appropriate before and after tolerance intervals

that cover 99% of DTN times with 95% confidence and note the insight that these

provide into the impact of the process changes.

4. The worksheet Sand.MTW contains the percentage of sand by weight in samples of

aggregate material for use in the construction industry. Given that the upper specifi-

cation limit is 10%, carry out a capability analysis of the data. You should verify that

direct use of Capability Analysis (Normal) overestimates capability comparedwith that

obtained using a Box–Cox transformation and with that obtained using a Weibull

distribution.

5. A large call centre, which operates from 08.00 until 20.00 Monday to Friday, is staffed

by teams A, B and C, with A responsible for 08.00 until 12.00, B for 12.00 until 16.00

and C for the remaining period each day. For one particular week recordings of samples

of 40 of the calls received during each half–hour period were analysed by supervisors

for conformance to specifications. The worksheet Calls.MTW gives summary data.

(i) Carry out a binomial capability analysis of the complete data set without taking

team into account. Note the signals on the P chart and the oscillatory behaviour of

the Cumulative %Defective (nonconforming) plot.

(ii) Unstack the data by team and carry out a binomial capability analysis for each

team. What do you conclude?

6. Set up the funnel plot data in Table 5.7 in Minitab and, viewing the data as a series of

samples from a process, carry out a binomial capability analysis. Compare the funnel

plot in the output with that in Figure 5.29.
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